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Abstract: Intrinsically disordered (ID) proteins function in the absence of a unique stable structure

and appear to challenge the classic structure-function paradigm. The extent to which ID proteins
take advantage of subtle conformational biases to perform functions, and whether signals for such

mechanism can be identified in proteome-wide studies is not well understood. Of particular

interest is the polyproline II (PII) conformation, suggested to be highly populated in unfolded
proteins. We experimentally determine a complete calorimetric propensity scale for the PII

conformation. Projection of the scale into representative eukaryotic proteomes reveals significant

PII bias in regions coding for ID proteins. Importantly, enrichment of PII in ID proteins, or protein
segments, is also captured by other PII scales, indicating that this enrichment is robustly encoded

and universally detectable regardless of the method of PII propensity determination. Gene ontology

(GO) terms obtained using our PII scale and other scales demonstrate a consensus for molecular
functions performed by high PII proteins across the proteome. Perhaps the most striking result of

the GO analysis is conserved enrichment (P < 1028) of phosphorylation sites in high PII regions

found by all PII scales. Subsequent conformational analysis reveals a phosphorylation-dependent
modulation of PII, suggestive of a conserved ‘‘tunability’’ within these regions. In summary, the

application of an experimentally determined polyproline II (PII) propensity scale to proteome-wide

sequence analysis and gene ontology reveals an enrichment of PII bias near disordered
phosphorylation sites that is conserved throughout eukaryotes.
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Introduction

Nearly 30% of the human genome encodes intrinsi-

cally disordered (ID) protein sequences that assume

no unique, stable structure under native conditions.1

The prevalence of ID segments presents a challenge

to the structure–function paradigm; because ID

sequences lack stable structure yet perform crucial

functions. ID proteins differ in amino acid composi-

tion from structured proteins,2 resulting in higher

charge to hydrophobicity ratios.3 Presently, whether
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or how compositional differences manifest as confor-

mational propensities that may be tunable and thus

utilized for functions such as signaling is not well

understood. Recent studies examined ID protein

sequences to identify molecular recognition features

proposed to be local sequence regions prone to adopt

structures important for protein-protein

interactions.4,5

One conformation suggested to be highly popu-

lated in the unfolded states of proteins6,7 and pep-

tide sequences with high net charge8–11 is the poly-

proline II (PII) conformation. Binding of proline-rich

regions that are biased to the PII conformation is

vital for cell signaling related to growth and differ-

entiation.12,13 Presently, it is estimated that the

human genome may encode over 500 copies of

domains (including SH3, SH2, WW, EVH1, and

GYF) that interact with proline-rich regions.14,15 In

fact, genomic analysis has identified proline-rich

regions as one of the most commonly encoded motifs

in eukaryotes.16 However, concerning the PII pro-

pensity of all amino acids (not just proline-rich

regions) at a proteome-wide scale, little is known of

the distribution of PII bias among protein sequences,

the evolutionary conservation of PII bias within pro-

tein sequences, or the possible utilization of PII for

functions outside of cell signaling.

To address whether sequences select for regions

of high PII propensity and potentially utilize PII

propensity functionally, a complete, calorimetrically-

determined amino acid propensity scale is developed

for the PII conformation. Amino acid PII propensity

has been the focus of several experimental17–21 and

computational22–25 studies. We employ our calori-

metrically-determined PII scale and scales of

others17–25 to investigate whether PII is enriched in

ID proteins, and if so what functional roles such pro-

teins play. Our approach maps amino acid PII pro-

pensities onto protein sequences in order to charac-

terize the functional roles of PII at a proteome-wide

level.

Results and Discussion

PII propensities for all amino acids were determined

using a peptide host-guest system and isothermal ti-

tration calorimetry.26–28 The C. elegans Sem-5 (sex

muscle five) SH3 (Src-homology 3) domain binds a

peptide corresponding to the recognition sequence of

its binding partner, Sos (son of sevenless). Impor-

tantly, in the Sem-5 SH3-Sos complex, the Sos

ligand is bound in the PII conformation29 [Fig. 1(A)].

Substitution at a noninteracting position results in a

decrease in binding affinity (Kapp) relative to the

wild-type peptide. Comparison of Kapp from iso-

therms [Supporting Information Fig. 1(A)] reports

on the change in binding affinity upon substitution.

Because the substitution is made at a site that is

surface exposed in the bound complex and does not

perturb the binding interface [Supporting Informa-

tion Fig. 1(B)],26,29 we can infer that the observed

change in binding affinity reflects a change in the

conformational equilibrium (Kconf) between binding

incompetent and binding-competent (i.e., PII) states

of the Sos ligand [Fig. 1(A)]. After correction for

effects of the guest residue on cis/trans isomerization

of the preceding proline residue using 1H-NMR

experiments,30,31 the measured change in Kapp can be

interpreted as a PII propensity26 (Supporting Infor-

mation). Cyclic sidechains (HIS, PHE, TRP, TYR) and

GLY have low PII propensities, while long, charged

sidechains (GLN, GLU, LYS) have higher PII propen-

sities [Fig. 1(B)]. However, there is no apparent corre-

lation of PII propensity with any single physico-chem-

ical property.32 Being charged, for example, does not

necessarily correspond to high PII propensity, as

ASN, ASP, and HIS are average or below [Fig. 1(B)].

Differences in free energy of binding calculated

for ALA and GLY correspond to previous measure-

ments,26 and agree with PII propensities determined

by others.22,33 A study using a hard sphere collision

model recently evaluated the ability of conforma-

tional bias to different regions of Ramachandran

space to reproduce experimentally measured binding

of ALA and GLY substituted Sos peptide to SH3.34

The results of the simulations indicated that only

bias to the PII conformation at rates similar to those

measured previously26 and in this study were capa-

ble of quantitatively reproducing experimentally

determined binding energies.34 In fact, the same

Figure 1. Determination of a calorimetric PII scale. (A)

Schematic of the binding equilibrium of SH3 (blue) and Sos

peptide (green) with surface-exposed substitution site (red)

(PDB code: 1SEM).29 (B) PII propensity scale with cis/trans

isomerization correction (black), and without correction

(white). Error bars are propagated error in DDG þ 30 cal/mol.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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hard sphere model used by Whitten et al.34 can

quantitatively reproduce the PII propensities for

ALA and GLY relative to proline.32 Further, the

rank order of PII propensities determined by our cal-

orimetric scheme can be reproduced by CD spectros-

copy of representative Sos peptides [Supporting In-

formation Fig. 1(C)]. Together, these data support

the validity of our calorimetrically determined PII

propensity scale.

The experimental PII propensity scale reported

here [Fig. 1(B) and Supporting Information Table I]

was used to investigate the PII content of represen-

tative proteomes. An algorithm was developed to cal-

culate PII propensity along a given sequence by

determining the average PII bias within a sliding

window [Fig. 2(A)]. The effectiveness of this

approach was determined by examining sequences

previously reported to be high in PII [Fig. 2(B–E)].

The high PII regions of human tau,35 the PEVK do-

main of the enormous human titin protein,36 and

the periplasm-spanning domain of the bacterial

TonB protein,37 are all detected by our algorithm as

being significantly above the average PII propensity.

In contrast, the PII propensity calculated along the

sequence of an outer membrane protein, known to

have a b-barrel structure,38 appears as noise about

the average PII propensity [Fig. 2(E)]. The ability of

the algorithm to (1) detect high PII regions in sys-

tems investigated by others and (2) discriminate

between these regions and proteins known not to

have significant PII structure, suggests that our

algorithm can reasonably detect the level of PII bias

in protein sequences.

The distributions of average PII propensities for

structured protein segments (extracted from the

PDB39) and ID regions from DisProt40 (which have

been experimentally verified to be disordered or con-

tain disordered segments) reveals important differ-

ences (Fig. 3). Although there is considerable overlap

in the distributions, ID regions show enrichment of

high PII propensity. Specifically, 92% of all windows

with an average PII propensity of 40% or more occur

in ID regions. All of the most extreme PII segments

(i.e., >47% PII) are in disordered sequences. Impor-

tantly, this is not to claim that all ID segments are

high in PII bias. Notably, ID sequences often contain

GLY-rich regions that are on the low end of the PII

distribution.

To determine whether the computed enrichment

of PII in ID sequences is dominated by a small num-

ber of residues, or whether a broad repertoire of

amino acids contribute to the signal, PII propensities

were recomputed with PRO, LYS, and GLN artifi-

cially set to mean values [Supporting Information

Figure 2. Schematic and validation of an algorithm for calculation of PII propensity within amino acid sequences. (A) A

sliding window calculated the position-specific average PII propensity along a dataset of protein sequences, referencing the

experimentally determined propensity at site (red) and window residues (blue). High PII regions of (B) human tau, (C) human

titin, and (D) bacterial TonB, can be detected using the sliding window scheme and the calorimetrically-determined PII scale

(black line). The proteome average sequence PII propensity is shown (dashed gray line) for reference. (E) A transmembrane

protein (Omp85) whose family is known to have b-barrel structure38 shows no high PII signal. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 2(A)]. ID segments nonetheless maintained

their relative enrichment, indicating that enhance-

ment of PII content is robustly encoded and not an

artifact of selecting only PRO, LYS, or GLN rich seg-

ments. The observed enrichment was also insensi-

tive to the window size employed to calculate the PII

bias [Supporting Information Fig. 2(B,C)]. The

enrichment of PII in ID sequences was also observed

with PII propensities measured by others17,19,22 [Fig.

4(A–C)]. However, the enrichment could not be cap-

tured by randomly generated PII scales [Supporting

Information Fig. 2(D)]. In summary, the fact that

the enrichment observed in Figure 3 could also be

captured using other experimental or computational

(coil library or molecular dynamics) scales, indicates

that the enrichment is strongly encoded and not de-

pendent on the method of PII determination.

We note that Avbelj and Baldwin report that

neighboring b-branched or aromatic residues may

promote b-strand conformations41 in a coil library.

Another study reports that aromatic amino acids

may disfavor the PII conformation.21 Our calorimet-

rically-determined PII propensities are consistent

with these data,21,41 as most cyclic amino acids in

our scale have low PII propensities, even with cis/

trans isomerization corrections [Fig. 1(B) and Sup-

porting Information Table I]. Differences in amino

acid composition between our datasets [Fig. 4(D)]

directly support our expectation that aromatic resi-

dues contribute only modestly to our analysis.

Importantly, in our sequence analysis, we

assume that context dependence of PII propensity is

minimal, which is supported by recent studies of

blocked dipeptides.20 Correlation of PII propensities

reported by Pappu and coworkers22 also suggests

that nearest neighbor context has negligible impact

on the rank order of PII propensities (Supporting In-

formation Table II). PII propensities calculated in

PRO, ALA, GLY, VAL, and PHE contexts are all

statistically correlated (P < 0.05), with Spearman

coefficients ranging from 0.800 to 0.979 (Supporting

Information Table II). While the numerical PII pro-

pensities differ in these contexts,22 it is clear that

Figure 3. PII propensity is enriched in ID segments. ID

segments show significant (P < 0.05) enrichment of high PII

propensity (solid line) relative to structured proteins (dashed

line). Ordered segments of disordered proteins (dotted line)

are shown.

Figure 4. Enrichment of PII propensity in ID sequences is detected using other PII scales. ID segments of disordered

proteins show significant (P < 0.05) enrichment of high PII propensity (black line) relative to structured proteins (dashed line)

using PII scales of (A) Rucker et al.,17 (B) Tran et al. PPXPP,22 and (C) Grdadolnik et al.19 (D) Amino acids whose frequencies

increase in ID sequences (red) are near the top of the average PII rank order; those with decreasing frequencies in ID

sequences (blue) occur near the bottom of most PII scales. (E) Average PII rank order from all PII scales.17–25 Error bars show

standard deviation of PII rank across scales. Amino acids are nonpolar (red), polar (blue), aromatic (purple), negatively

charged (orange), positively charged (green). (F) Spearman correlation of the average PII rank order to the TOP-IDP scale.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]43
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host context does not significantly change the rank

order of a PII scale (Supporting Information Table

II). These observations support our assertion that

low and high PII sequences can be differentiated in

the proteome. Most importantly, PII scales derived

from host systems of different contexts including bio-

logical peptides (this study), proline-rich pep-

tides,17,22 and dipeptides19 all detect the enrichment

of PII bias within ID proteins [Figs. 3 and 4(A–C)],

suggesting the coding of PII in these regions is ro-

bust despite possible near neighbor effects.41,42

Analysis of the amino acid composition of

sequence datasets elucidates the ability of multiple

PII scales to detect the enrichment of PII in ID seg-

ments because, even though the numerical amino

acid PII propensities may differ between scales,

there is a general consensus regarding which amino

acids have high (PRO, LYS, GLN, GLU) and low

(HIS, TRP, TYR, PHE) PII propensity. The consen-

sus can be clarified by examining the average rank

order of all PII scales, which shows that amino acids

with high average PII rank from all scales also tend

to be enriched in amino acid composition within ID

sequences [Fig. 4(E)]. Further, the PII rank order

averaged from all scales correlates (P < 0.05) with

the rank order of the TOP-IDP scale, a scale of

amino acids proposed to promote disorder43 [Fig.

4(F)], lending further evidence to the hidden correla-

tion between PII scales and their ability to detect

enrichment in ID segments.

To investigate whether PII distributions in ID

and structured proteins arise from enrichment

within specific local sequence stretches, the distribu-

tions were compared to artificial sequences con-

structed by shuffling sequences within each group.

PII propensities of shuffled sequences of structured

proteins showed no change from the original distri-

bution [Fig. 5(A)], indicating that PII bias is ran-

domly encoded (i.e., not enriched) along sequences of

structured proteins, a result consistent with pro-

teome-wide sequence correlations reporting nearly

random site-to-site correlations between amino acids

in sequences of structured proteins.44 Shuffling of

ID sequences, in contrast, reveal a dramatic change

(P < 0.05) in the distribution [Fig. 5(B)], suggesting

that PII is selectively enriched within particular seg-

ments of the ID sequence.

To determine the extent to which evolution

selected for high PII sequences, in silico evolution

was performed to monitor robustness of sequence

PII propensities to amino acid substitution. Substi-

tutions were performed by two methods: (1) substi-

tuting randomly, but maintaining the dataset amino

acid composition, and (2) using the well-established

BLOSUM62 matrix,45 which generally preserves

physico-chemical properties of substituted amino

acids. Regardless of substitution method, the PII

propensities of structured protein sequences were

maintained [Fig. 6(A)], further supporting the

conclusion from sequence shuffling [Fig. 5(A)] that

PII in structured proteins is not an evolutionarily

selected trait.

Unlike the sequences of structured proteins,

substitution of ID sequences, either randomly or by

BLOSUM62, resulted in a significant decrease in

the PII propensity [Fig. 6(B,C)]. These results are

consistent with bioinformatics analyses suggesting

that, relative to sequences encoding structured pro-

teins, conservation of ID within a sequence is more

difficult in in silico evolution experiments.46 Sensi-

tivity to substitution, even when the physico-chemi-

cal properties are maintained, indicates that the

high PII segments occupy a small, highly specialized

sequence space that has evolved specifically to pre-

serve PII propensity.

What function do these specialized, high PII

proteins perform? To address this question in a

global, systematic, and unbiased way, the PII con-

tent of six eukaryotic proteomes was calculated

[Fig. 7(A)], and gene ontology (GO) analysis was per-

formed for the top 1% of PII proteins from each pro-

teome. The proteins in the top 1% of each eukaryotic

proteome exhibited strong conservation of features

and functions. Of the top GO terms returned in

order of statistical enrichment, many were identical

in all proteomes [Fig. 7(B) and Supporting Informa-

tion Table III]. High PII proteins are associated with

a diverse array of functions (Supporting Information

Table III), not for one specialized purpose. One GO

term of note that was reproducibly enriched was

Figure 5. (A) The PII propensity distribution of folding

sequences (n) and shuffled sequences (h) are

superimposable. (B) Locally enriched high PII bias (n) is

abolished upon shuffling ID sequences (h).
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‘‘collagen,’’ an archetype PII triple helix.47 In addi-

tion, transcription regulation also appears to employ

high PII proteins, consistent with the observation

that transcription factors are enriched in ID.48 Simi-

lar GO terms were obtained with other PII propen-

sity scales that utilize experimental or computa-

tional (coil library and molecular dynamics)17–25

methods [Fig. 7(C)]. A consensus on the GO features

of high PII proteins was evident from comparison of

results obtained using different PII scales; in stark

contrast to that observed using randomly selected

protein sets.

A striking feature of the analysis is that high

PII proteins have a remarkable propensity for phos-

phorylation (P < 10–8) [Fig. 7(B)], adding clarity to

the comparatively weak correlation observed

between phosphorylation sites and disorder.49 Statis-

tical enrichment of the ‘‘phosphoprotein" GO term

was robust, being observed independent of including

PRO, SER, THR, or TYR in the calculation of the

top PII proteins in the proteome [Fig. 7(D)]. Enrich-

ment of the ‘‘phosphoprotein" GO term among the

highest PII sequences in the proteome was also de-

tectable using other PII scales17–25 [Fig. 7(D)]. Calo-

rimetric determination of the impact of phosphoryla-

tion of SER, THR, and TYR [Fig. 8(A)] revealed

amino acid specific effects. While the PII propensity

of SER and TYR are not affected by phosphorylation

(within error), a dramatic increase in the PII pro-

pensity of phospho-THR was observed, reaching a

value that compares to the high PII seen for PRO

residues.

Investigation of the origin of this effect reveals

that the steric consequences of phosphorylation at

THR are significantly higher than with SER, a

result that is not altogether unexpected given that

THR phosphorylation introduces additional bulki-

ness to the b-carbon (Supporting Information Fig. 3).

Such changes are qualitatively similar to mutational

strategies that modulate accessible conformations by

introduction or removal of b-branched amino acids.50

Phosphorylation of SER or TYR, on the other hand,

produces no such effect. We note that in the context

of the Sos peptide system utilized here, SER, THR,

and TYR are observed to behave differently upon

phosphorylation. In other contexts, however, phos-

phorylation or other post-translational modification

may have other effects on conformational propensity.

Figure 6. Evolutionary selection of high conformational bias. (A) Amino acid substitution by either random change or by

BLOSUM6245 preserves the average PII propensities of 10,000 in silico evolved ‘‘daughter’’ sequences generated from a

‘‘parent’’ set of randomly selected folding protein sequences (P > 0.25). The average PII propensity of the ‘‘parent’’ sequences

(black dot) is well within the ‘‘daughter’’ distribution. (B) The average PII distributions of 10,000 ‘‘daughter’’ sequences deviate

from the high PII ‘‘parent’’ sequences (l) (P < 0.05). (C) The statistical deviation of the ‘‘daughter’’ sequence distribution depends

on the sequence identity maintained during in silico evolution. The ‘‘parent’’ sequence falls within the ‘‘daughter’’ PII distribution

at all levels of sequence identity in structured proteins (squares), regardless of whether substitution was performed randomly (n)

or by BLOSUM6245 (h). The log of the p-value of the ‘‘parent’’ sequence PII propensity relative to the ‘‘daughter’’ sequences

sharply decreases in high PII proteins when substitution was random (l) and when substitution occurred by BLOSUM6245 (*)

Colored points on each line correspond to the significance of the ‘‘parent’’ to ‘‘daughter’’ difference shown in (A,B). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In any case, our results [Fig. 8(A)] indicate that

post-translational modifications have a capacity to

dramatically change local bias toward the PII confor-

mation.51 Biologically, this result provides a compel-

ling mechanism for local ‘‘tuning" of backbone con-

formational bias, which may be exploited for

multiple functions including molecular recognition,

targeting for degradation, or allosteric regulation.

Although gene ontology reveals that high PII

proteins are often phosphorylated, it is not clear

whether these proteins are phosphorylated within

high PII regions or at other locations in the protein.

Analysis of the PII propensities of known, experi-

mentally validated phosphorylation sites52,53 indi-

cates that phosphorylation sites are indeed coinci-

dent with higher PII segments [Fig. 8(B)]. The

contexts of phosphorylation sites are diverse, con-

sisting of regions composed of charged residues as

well as PRO-rich regions containing few charged res-

idues. Analysis of phosphorylation site density as a

function of PII propensity reveals a striking enrich-

ment of phosphorylation sites in both high and low

PII contexts [Fig. 8(C)]. The increased density at

high PII is surprising given that the PII propensities

of phosphorylation-competent residues (SER, THR,

and TYR) have average or low PII propensity [Fig.

1(B)]. Of note is that the enrichment in phosphoryla-

tion site density is common throughout many eu-

karyotic proteomes, including human [Fig. 8(C)],

mouse, fly, and yeast (Supporting Information

Fig. 4). Because the majority of phosphorylation sites

occur at SER, these sites dominate the enhancement

distributions [Fig. 8(C) and Supporting Information

Fig. 4]. Inspection of THR phosphorylation site den-

sity, however, shows a distinct preference for local-

ization in high PII contexts. The enrichment of THR

in the high PII contexts, which is the only residue to

show a phosphorylation dependent increase in PII

propensity (i.e., tunability) in our host guest system,

strongly suggests that nature has specifically

selected THR for tuning of local conformational bias

in high PII regions. It is remarkable that THR exhib-

its alternate distribution relative to SER, particu-

larly in light of a recent study suggesting THR sites

evolve at different rates than SER or TYR sites.54

The distributions of site densities observed in

Figure 8(C) (also observed in other eukaryotes, Sup-

porting Information Fig. 4) prompted investigation

of the correlations of PII propensity with phospho-

protein functions at a proteome-wide level. Figure 9

Figure 7. Phosphorylation is a functionally conserved feature of high PII proteins. (A) Average PII propensity distributions for six

eukaryote proteomes: H. sapiens (red), M. musculus (orange), D. melanogaster (yellow), C. elegans (green), A. thaliana (light blue),

and S. cerevisiae (dark blue). (B) Venn diagram of the number of features shared in the top 1% of PII proteins from H. sapiens

(red), M. musculus (orange), and S. cerevisiae (blue). (C) Commonality of the top five GO terms by statistical enrichment among

PII scales17–25 and the present scale (black line) compared to ten random protein sets (gray dashed line). (D) ‘‘Phosphoprotein’’

GO term enrichment obtained by PII scales: (i) Rucker et al.,17 (ii) Shi et al.,18 (iii) Grdadolnik et al.,19 (iv) Oh et al.,20 (v) Brown et

al.,21 (vi) Tran et al. (PPXPP),22 (vii) Fleming et al. (coil library),23 (viii) Beck et al.,24 (ix) Moradi et al.,25 and (x) the present scale.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reports a condensed representation of the different

biological processes and molecular functions associ-

ated with phosphoproteins whose experimentally

validated phosphorylation sites reside in either low

or high PII contexts. The low PII phosphoproteins

are typically proteins involved in kinase or transfer-

ase activity [Fig. 9(A,B)]. These proteins employ

SER, THR, and TYR phosphorylation sites. The rela-

tive enrichment of TYR sites is expected from the

site density [Fig. 8(C)], and the identities of the low

PII phosphoproteins (kinases and transferases) is

consistent with lower PII sequences tending to have

globular structures [Figs. 3 and 8(B)]. TYR enrich-

ment is also in agreement with amino acid composi-

tion bias we have noted for structured proteins [Fig.

4(D)]. In contrast, the high PII phosphoproteins

rarely employ TYR sites in the human proteome

[Figs. 8(C) and 9(C,D)]. Close examination of Figure

9(C,D) reveals that SER and THR sites exhibited

very similar GO term enrichment, with ‘‘macromo-

lecular complex assembly’’ [Fig. 9(C)] being the only

GO term exclusively enriched in high PII THR sites.

High PII phosphoproteins are enriched in a biologi-

cal processes and molecular functions associated

with mitosis, chromosome organization, cell cycle

regulation, and transcription (consistent with previ-

ous results suggesting transcription factors are

prone to be ID48) [Fig. 9(C,D)]. Comparing the differ-

ence in amino acid utilization (color) and the GO

terms listed in Figure 9, it is immediately evident

that low and high PII phosphoproteins perform dif-

ferent cellular functions. Perhaps even more inter-

esting, we note that the GO terms enriched for high

PII phosphoproteins [Fig. 9(C,D)] differ slightly from

those observed for all high PII proteins from the pro-

teome at-large (Fig. 8 and Supporting Information

Table III), suggesting that modification (phosphoryl-

ation, in this case) within high PII context may be

selected for a specialized functional utility.

Conclusions
Here we demonstrate for the first time a proteome-

wide correlation between an experimentally deter-

mined conformational bias for PII and the propen-

sity to be intrinsically disordered and thus unfolded.

The functional importance of this relationship is

revealed through a dramatic enrichment of phospho-

rylation sites within high PII segments. Proline-

directed phosphorylation sites contribute to the

enrichment of phosphorylation sites within high PII

segments. Yet, there are hundreds of experimentally

validated phosphorylation sites that also contribute

to the enrichment but contain no nearby proline res-

idues. We speculate that the proteome-wide bias of

phosphorylation sites to high PII (and therefore

likely disordered) segments may be a result of evolu-

tionary pressures to facilitate kinase accessibility to

these disordered regions. The conformational biases

within these disordered regions may be a thusfar

unappreciated means of regulating kinases or phos-

phatase accessibility and as a consequence their ac-

tivity in signaling or other functions.

The conservation of these trends across multiple

proteomes and the differential sensitivity of THR and

SER to phosphorylation provide a compelling argu-

ment for their differential usage. We have endeavored

to elucidate the different biological processes and mo-

lecular functions for which THR and SER phosphoryl-

ation sites have been selected for, finding that the

functions of these sites in low and high PII contexts

are completely different. Not explored, but equally as

plausible is the possibility that other post-transla-

tional modifications (acetlyation, methylation, etc.)

may also utilize ID segments and perhaps even differ-

entially impact PII conformational propensity as is

the case with phosphorylation.

Figure 8. Phosphorylation can modulate PII and is

differentially distributed in the proteome. (A)

Calorimetrically-determined PII propensities for unmodified

(white) and phosphorylated (red) SER, THR, and TYR. (B)

PII propensity distribution of the H. sapiens proteome

(black) and phosphorylation sites therein (red). (C) Bimodal

enrichment of phosphorylation site density (black) observed

in H. sapiens, dominated by SER (blue). THR sites (red)

have enriched density in high PII contexts, while TYR

(purple) is mostly in low contexts. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Our results reveal a potentially new way that

ID proteins can modulate activity. Instead of using

post-translational modification to induce a conforma-

tional change between two ostensibly discrete confor-

mations (i.e., T and R states) in the context of a

folded protein, ID proteins can potentially affect

functional changes by tuning the distributions of

otherwise disordered states specifically with respect

to the PII conformation, as in the case for THR in

this study. Whether and how this can be functionally

utilized awaits further investigation.

Materials and Methods

ITC and CD experiments
The Sos peptide (Ac-VPPPVPPRRRY) and variants

of the peptide with guest ‘‘X" at position (Ac-VPPX-

VPPRRRY) were acquired commercially from Gen-

Script USA or Neo BioSci. Purity of the peptide sam-

ples (>98%) were estimated using reverse high

performance liquid chromatography and by mass

spectrometry. Sem-5 C-terminal SH3 domain from C.

elegans was purified as described previously.29 The

SH3 used in this study is a pseudo-wild type protein.

CYS 55 has been mutated to an ALA to prevent pos-

sible oxidation and intermolecular cross-linking.

A Microcal VP-ITC system was used to perform

all titration experiments.55 SH3 was dialyzed

against phosphate buffer, pH 7.5 (20 mM sodium

phosphate, 200 mM sodium chloride (Fisher)). Ly-

ophilized peptides were dissolved in buffer from the

final protein dialysis. Protein and peptide sample

concentrations were determined using the Edelhoch

method.56 Protein samples for titration experiments

ranged in concentration from 0.5 to 0.65 mM, and

Figure 9. Low and high PII phosphoproteins are utilized for different cellular functions. Relative enrichment for GO terms

obtained for SER (blue), THR (red), and TYR (purple) phosphoproteins correspond to the pie sizes in the above graphs. (A)

Low PII phosphoprotein biological process related GO terms. (B) Low PII phosphoprotein biological process related GO

terms. (C) High PII phosphoprotein biological process related GO terms. (D) High PII phosphoprotein biological process

related GO terms. Comparison of the GO terms and amino acid utilization (SER, THR, or TYR) in each panel immediately

shows how low PII (A,B) and high PII (C,D) phosphoproteins have different functions across the human proteome. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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peptide concentrations were approximately 10 times

the protein concentration. All Sos peptide variants

exhibited similar solubility. At 25�C, a series of 8 uL

injections were made (34–35 total injections), with a

spacing of 280 s between injections for equilibration.

An initial injection of 2 uL was made and the data

discarded for each titration to account for heat

anomalies caused by instrument equilibration and

pre-titration mixing by diffusion. Data were cor-

rected for ligand heat of dilution by performing a ti-

tration of peptide into buffer and directly subtract-

ing the resulting heats. These corrected data were

fit in Origin 7 (OriginLab) using a nonlinear least

squares regression varying the stoichiometry (n),

binding constant (Kapp), and the molar heat of bind-

ing (DH). The apparent free energy of binding

(DGapp) and the entropy (DS) were calculated using

the best-fit binding constant (Kapp) and the thermo-

dynamic relation below:�RT ln Kapp ¼ DGapp ¼ DH
� TDS(1)where R is the gas constant (1.985 cal/K/

mol) and T is the temperature (298 K). PII propen-

sities were determined from the DDGapp of each mu-

tant relative to wild type (proline) as described pre-

viously.26–28 Statistical analysis of error propagation

in the PII propensity scale was calculated in Python,

where the error is the standard deviation in the dif-

ference in DGapp from the fit Kapp.

All CD scans were performed on a Jasco J-720

spectropolarimeter. Sos peptide samples were pre-

pared by diluting ITC ligand solutions (with identi-

cal buffer) to concentrations suitable for CD, �0.1

mg/mL. As such, the buffer conditions were identical

to ITC (20 mM sodium phosphate, 200 mM sodium

chloride, pH 7.5). Spectra were measured at 298 K

from 200 to 250 nm, at a scan rate of 10 s/nm. Data

were collected in nanometer increments and repre-

sent an average of three scans.

A detailed derivation is provided in the Support-

ing Information to explain how PII propensities are

determined.

Calculation of PII propensity in sequences and
in silico evolution of PII propensity

Several protein sequence datasets39,40,52 were

employed for our analysis. Several protein sequence

datasets were employed for the analysis of the PII

content of the proteome, including a nonredundant

set of human protein sequences extracted from the

PDB39 consisting of proteins from each SCOP fam-

ily,57 an ID protein dataset DisProt 5.5,40 and the

complete proteomes of six eukaryotes—H. sapiens

(human), M. musculus (mouse), D. melanogaster

(fly), C. elegans (worm), A. thaliana (plant), S. cere-

visiae (yeast) obtained from the Integr8 project.52

Algorithms for calculating the PII propensities of

amino acid sequences were written in Cþþ and

Python, with additional data processing in Perl, the

R Project, and Microsoft Excel. The PII bias at a

specific position was computed as an average of the

PII propensities for a given window. The process is

customizable- varying propensity scales, inclusion/

exclusion of amino acids, window size (1–100) have

been tested (Fig. 2 and Supporting Information

Fig. 2). The calculations can be performed ignoring

the contributions of specific amino acids (such as

proline, for example) and with any window size. Sta-

tistical difference between PII propensity distribu-

tions were assessed by a t-test. Calculations shown

in Figures 2 and 5 were performed over a window

size of 32 residues, conservatively assuming 60% PII

propensity for proline. Each distribution is com-

prised of over 40,000 data points. In Figure 4(A–C),

a window size of 10 residues was used. Statistical

significance of correlations shown in Figure 4(F)

were assessed by mathematical standards.58

An algorithm was developed to compare the PII

content of a biological ‘‘parent" sequence to those cre-

ated by random substitution (maintaining back-

ground amino acid frequencies of the datasets) or by

substitution that conserves physico-chemical proper-

ties, BLOSUM6245 or PAM59 substitution matrices.

To quantify the effect of mutation on PII content of

a sequence, the average PII propensities of ‘‘parent"

and the in silico evolved ‘‘daughter" sequences were

calculated as described above. Substitution within

the algorithm is completely adjustable, and can

involve any part of the sequence, maintaining any

arbitrary level of identity to the parent sequence,

and with any input substitution frequencies. The

means and standard deviations of the PII distribu-

tions for in silico evolved ‘‘daughter" sequences (n ¼
10,000) were computed from which the z-score of the

average PII propensity of the ‘‘parent" sequences

was calculated. The z-score was converted into a p-

value, the logs of which are plotted in Figure 6. In

all cases except the PII distribution of ‘‘daughter’’

high PII, BLOSUM6245 sequences, the distributions

were normal. Code and scripts for shuffling tests, in

silico evolution, and analyzing the PII content of the

sequences were written in Python.

Gene ontology of high PII proteins

The database for annotation, visualization, and inte-

grated discovery (DAVID) was identified enriched

features and functions of the top 1% of high PII pro-

teins in eukaryotic proteomes obtained from

Integr8.52 To assess GO term enrichment in the top

1% of proteins selected for GO analysis (n ¼ 200), a

one-tailed Fisher exact test was used,60 and P-values

of enrichment reported by DAVID61,62 were normal-

ized to P-values that could be obtained by submis-

sion of random protein datasets (10–3). In Figure

7(B), reported is the number of GO terms returned

with significance (P � 10–6), with ‘‘phosphoprotein’’

enriched (P � 10–8) in all three species. The exact

normalized p-values for ‘‘phosphoprotein’’ enrichment

in H. sapiens, M. musculus, and S. cerevisiae [Fig.
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4(B)] were P ¼ 7.6 � 10–11, P ¼ 5.4 � 10–8, and P ¼
8.7 � 10–14, respectively. Code and scripts for mining

the proteomes and analyzing the sequences were

written in Python and Perl. DAVID output was proc-

essed manually in Microsoft excel. Calculations for

Figures 7–9 were performed over a window size of

50 residues, assuming 60% PII propensity for pro-

line. Each distribution is comprised of over 10,000

data points. Gene lists of proteins extracted from the

proteome based on their PII propensities were non-

redundant. High PII proteins (top 1% for GO analy-

sis) had the longest continuous segments of high PII

bias. Shown in Figure 7(D) is the log of the p-value

for ‘‘phosphoprotein’’ divided by log 10–3 (noise). In

Figure 8(C), the number of phosphorylation sites of

each type (SER, THR, or TYR) is normalized by the

number of peptides in each PII bin from the H. sapi-

ens proteome. Phosphoproteins were classified as

low PII (PII% < 31%, one standard deviation below

the mean) or high PII (PII% >38%, one standard

deviation above the mean) based upon the sequence

PII context of their experimentally validated phos-

phorylation sites. The sizes of the pie pieces in Fig-

ure 9 correspond to the relative statistical enrich-

ment of the GO term obtained from DAVID for

phosphoserine, phosphothreonine, and phosphotyro-

sine containing proteins that were then grouped in

the pie representation to show relative enrichment.

GO terms grouped as ‘‘Other’’ (Fig. 9) were individu-

ally statistically enriched (P < 0.05), yet relative to

other GO terms comprised less than 1% (individu-

ally) of the pie and were grouped for clarity.
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